CFTR is a conductance regulator as well as a chloride channel.
نویسندگان
چکیده
CFTR Is a Conductance Regulator as well as a Chloride Channel. Physiol. Rev. 79, Suppl.: S145-S166, 1999. - Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter gene family. Although CFTR has the structure of a transporter that transports substrates across the membrane in a nonconductive manner, CFTR also has the intrinsic ability to conduct Cl- at much higher rates, a function unique to CFTR among this family of ABC transporters. Because Cl- transport was shown to be lost in cystic fibrosis (CF) epithelia long before the cloning of the CF gene and CFTR, CFTR Cl- channel function was considered to be paramount. Another equally valid perspective of CFTR, however, derives from its membership in a family of transporters that transports a multitude of different substances from chemotherapeutic drugs, to amino acids, to glutathione conjugates, to small peptides in a nonconductive manner. Moreover, at least two members of this ABC transporter family (mdr-1, SUR) can regulate other ion channels in the membrane. More simply, ABC transporters can regulate somehow the function of other cellular proteins or cellular functions. This review focuses on a plethora of studies showing that CFTR also regulates other ion channel proteins. It is the hope of the authors that the reader will take with him or her the message that CFTR is a conductance regulator as well as a Cl- channel.
منابع مشابه
Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملEpithelial sodium channels regulate cystic fibrosis transmembrane conductance regulator chloride channels in Xenopus oocytes.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its well defined Cl(-) channel properties, regulates other ion channels. CFTR inhibits epithelial Na(+) channel (ENaC) currents in many epithelial and nonepithelial cells. Because modulation of net NaCl reabsorption has important implications in extracellular fluid volume homeostasis and airway fluid volume and compo...
متن کاملCystic Fibrosis Transmembrane Conductance Regulator
Description The cystic fibrosis transmembrane regulator (CFTR) gene codes for the CFTR protein; a chloride channel protein that helps in the transportation of chloride ions and water molecules across the cell membranes of lungs, liver, pancreas, and skin. CFTR is a member of the ATP-binding cassette family of membrane transport proteins, but appears to be unique within this family by functionin...
متن کاملIdentification of an ion channel-forming motif in the primary structure of CFTR, the cystic fibrosis chloride channel.
Synthetic peptides with sequences representing putative transmembrane (M) segments of CFTR (the cystic fibrosis transmembrane conductance regulator) were used as tools to identify the involvement of such segments in forming the ionic pore of the CFTR Cl- channel. Peptides with sequences corresponding to M2 and M6 form anion-selective channels after reconstitution in lipid bilayers. In contrast,...
متن کاملThe cystic fibrosis transmembrane conductance regulator (CFTR) inhibits ENaC through an increase in the intracellular Cl- concentration.
Activation of the CFTR Cl- channel inhibits epithelial Na+ channels (ENaC), according to studies on epithelial cells and overexpressing recombinant cells. Here we demonstrate that ENaC is inhibited during stimulation of the cystic fibrosis transmembrance conductance regulator (CFTR) in Xenopus oocytes, independent of the experimental set-up and the magnitude of the whole-cell current. Inhibitio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological reviews
دوره 79 1 Suppl شماره
صفحات -
تاریخ انتشار 1999